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1. Introduction 

 
The main focus of this work is the identification of laminate configurations which possess complex mechanical 
couplings but remain hygro-thermally curvature-stable (HTCS) or warp-free.   
 
HTCS laminates will allow a potentially broad range of exotic mechanical coupling attributes to be exploited 
without the complicating issue of thermal distortions, which are an inevitable consequence of the high 
temperature curing process.   
 
Aero-elastic compliant rotor blades with tailored extension-twist coupling* is an example of one such laminate 
design that requires either specially curved tooling or hygro-thermally curvature-stable properties in order to 
remain flat (or possess the desired shape) after high temperature curing. 
 
 

 
* Winckler, S. J. (1985) “Hygrothermally curvature stable laminates with tension-torsion coupling. J. American Helicopter 
Society, 31: 56-58. 
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2. Characterisation of laminates 

ite materials with thermal and/or mechanical coupling response. 3

Laminated composite materials may be characterized in terms of their unique coupling behaviour in response to 
mechanical and/or thermal loading; coupling behaviour which is not present in conventional materials (metals).  
 
The coupling behaviour, which is dependent on the form of the elements in each of the extensional (A), coupling 
(B) and bending (D) stiffness matrices may be described by a response based labelling system or compact matrix 
notation. 
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Table 1 – Subscript notation and response based labelling for: extensional stiffness matrix, A;   
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Summary of Matrix sub-scripts 
F = All elements Finite. 
I = Fully Isotropic form; A11 = A22; A66 = (A11 – A12)/2. 
S = Specially orthotropic (uncoupled or Simple) form. 
 
Response based labelling incorporates a cause and effect pairing, which is reversible, i.e. an extensional force 
resultant (Nx) gives rise to a shearing strain (γxy) in an E-S laminate.  
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Table 1 – Subscript notation and response based labelling for: bending stiffness matrix, D.   

DS Simple laminate ⎪
⎭
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DF Twisting-Bending; 
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Summary of Matrix sub-scripts 
F = All elements Finite. 
I = Fully Isotropic form; D11 = D22; D66 = (D11 – D12)/2. 
S = Specially orthotropic (uncoupled or Simple) form. 
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Table 1 – Subscript notation and response based labelling for: coupling stiffness matrix, B; 
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Continued 
Summary of Matrix sub-scripts 
0 = All elements (of stiffness matrix) zero. 
l = Leading diagonal elements (B11, B22 ≠ 0) of B matrix non-zero, all other elements zero. 

 
The cause and effect coupling relationship also corresponds to an applied (bending and/or twisting) 
moment resultant and the associated extensional (and/or shearing) strains, in this case a B-E laminate. 
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Table 1 – Subscript notation and response based labelling for: coupling stiffness matrix, B; 

Continued 
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Continued 
Summary of Matrix sub-scripts 
l = Leading diagonal elements (B11, B22 ≠ 0) of B matrix non-zero, all other elements zero. 
t = Off-diagonal elements (B16, B26 ≠ 0) of B matrix non-zero, all other elements zero. 
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Table 1 – Subscript notation and response based labelling for: coupling stiffness matrix, B; 

Continued 

BS 
Extension-Bending and 
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Concluded 
Summary of Matrix sub-scripts 
F = All elements Finite. 
S = Specially orthotropic (uncoupled or Simple) form; B16 = B26 = 0 when applied to B matrix. 
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Fig. 1 – Isolated coupling responses, due to free thermal contraction, for the: (ASB0DS) Simple or uncoupled laminate; (ASBlDS) B-E laminate 
with bending-extension coupling; (ASBtDS) B-S-T-E laminate with bending-shearing and twisting-extension coupling; (ASBltDS) B-E-B-S-T-E 
laminate with bending-extension, bending-shearing and twisting-extension coupling; (ASBSDS) B-E-T-S laminate with bending-extension and 
twisting-shearing coupling and; (ASBFDS) B-E-B-S-T-E-T-S or fully coupled. 
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Fig. 2 – Coupling responses, due to free thermal contraction, for (ASB0DF) B-T laminates with bending-twisting coupling combined with: 
(ASBlDF) B-E or bending-extension coupling; (ASBtDF) B-S-T-E or bending-shearing and twisting-extension coupling; (ASBltDF) B-E-B-S-T-
E or bending-extension, bending-shearing and twisting-extension coupling; (ASBSDF) B-E-T-S or bending-extension and twisting-shearing 
coupling and; (ASBFDF) B-E-B-S-T-E-T-S or fully coupled. 
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Fig. 4 – Coupling responses, due to free thermal contraction, for (AFB0DS) E-S laminates with extension-shearing coupling combined with: 
(AFBlDS) B-E or bending-extension coupling; (AFBtDS) B-S-T-E or bending-shearing and twisting-extension coupling; (AFBltDS) B-E-B-S-T-
E or bending-extension, bending-shearing and twisting-extension coupling; (AFBSDS) B-E-T-S or bending-extension and twisting-shearing 
coupling and; (AFBFDS) B-E-B-S-T-E-T-S or fully coupled. 
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Fig. 3 – Coupling responses, due to free thermal contraction, for (AFB0DF) E-S;B-T laminates with extension-shearing and bending-twisting 
coupling combined with: (AFBlDF) B-E or bending-extension coupling; (AFBtDF) B-S-T-E or bending-shearing and twisting-extension 
coupling; (AFBltDF) B-E-B-S-T-E or bending-extension, bending-shearing and twisting-extension coupling; (AFBSDF) B-E-T-S or bending-
extension and twisting-shearing coupling and; (AFBFDF) B-E-B-S-T-E-T-S or fully coupled. 
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3. Laminate design 

nated composite materials with thermal and/or mechanical coupling response. 13

Lamination parameters offer a set of non-dimensional expressions when ply angles are a design constraint and 
were used in the algorithm for developing the solutions that follow. 
 

3.1. Equivalent Fully Isotropic Laminates 

These are used to normalise the stiffness properties that follow. 

3.2. Hygro-thermally Curvature-Stable or Warp-Free Laminates 

The manufacture of any of the foregoing coupled classes of laminate presents a particular challenge if 
mechanical coupling attributes are required without the thermal distortions illustrated; such distortions are a 
consequence of the high temperature curing process requirements.   
Hygro-thermally curvature-stable or thermally warp-free laminates offer a tailored design solution.   
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3.2.1. E-B-S-T coupled quasi-homogenous orthotropic laminates (ASBSDS → AIBSDI) 

Quasi-homogenous orthotropic laminates possess concomitant extensional and bending stiffness properties, i.e. 
Dij = AijH2/12,  
 
Eight hygro-thermally curvature-stable solutions† were found to exist in the range up to 21 plies when standard 
ply angles are adopted.   
 
Table 2 – Hygro-thermally curvature-stable 16-ply quasi-homogeneous orthotropic stacking sequence configurations, together with the 
corresponding lamination parameter, ξ6, representing AIBSDI laminates with standard ply orientations ±45, 0 and 90° in place of symbols 
+, −,  and , respectively.   

Stacking sequence ξ6 
[+/−/−/+/−/+/+/−/ / / / / / / / ]T ≡ [+/−/−/+/−/+/+/−/ / / / / / / / ]T 1.00 
[+/−/−/+/ / / / /−/+/+/−/ / / / ]T ≡ [+/−/−/+/ / / / /−/+/+/−/ / / / ]T 0.50 
[+/−/ / /−/+/ / /−/+/ / /+/−/ / ]T ≡ [+/−/ / /−/+/ / /−/+/ / /+/−/ / ]T 0.25 
[+/ /−/ /−/ /+/ /−/ /+/ /+/ /−/ ]T ≡ [+/ /−/ /−/ /+/ /−/ /+/ /+/ /−/ ]T 0.13 

 
† York C. B. (2010b). Coupled Quasi-Homogeneous Orthotropic Laminates. Proc. 16th International Conference on Mechanics of Composite 
Materials, Riga, Latvia. 
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Table 3 – Conditions for hygro-thermally curvature-stable behaviour in coupled quasi-homogeneous orthotropic laminates. 

Lamination parameters and stiffness relationships with respect to material axis alignment, β. 
β = mπ/2  β = π/8 + mπ/4 β ≠ mπ/2, π/8 + mπ/4 
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3.2.2. E-B-S-T coupled extensionally isotropic laminates (AIBSDS) 

Dij ≠ AijH2/12 increases the design space to 8, 264 and 17,118 sequences with 12, 16 and 20 plies, respectively. 

(a) Aij/AIso (b) Bij/BIso (c) Dij/DIso 
Figure 1 – Polar plots of the: (a) A; (b) B and (c) D matrices corresponding to off-axis material alignment, 0° ≤ β ≤ 360°, for the 12-ply 
AIBSDS hygro-thermally curvature-stable laminate stacking sequence [−/+2/ /−2/+/ 3/ 2]T, assuming standard ply orientations ±45, 0 and 
90° in place of symbols +, −,  and , respectively. 
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3.2.3. E-B-S-T;B-T coupled extensionally isotropic laminates (AIBSDF) 

For D16, D26 ≠ 0, the design space contains 6, 280, 23,652 and 2,379,722 sequences with 8, 12, 16 and 20 plies.  

(a) Bij/BIso 
 

(b) Dij/DIso 
Figure 7 – Polar plots of the: (a) B and (b) D matrices corresponding to off-axis material alignment, 0° ≤ β ≤ 360°, for the 12-ply AIBSDF 
hygro-thermally curvature-stable laminate stacking sequence [−/ 2/ 3/+3/ /−2]Τ, assuming standard ply orientations ±45, 0 and 90° in place 
of symbols +, −,  and , respectively. 
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⎦⎣ 661616 AA-A

 

 
Chen ‡  demonstrated that the constraints on hygro-thermally curvature-stable laminates may be relaxed in 
comparison to those stated in Table 3, i.e.: 
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‡ Chen, H. P. (2003). Study of hygrothermal isotropic layup and hygrothermal curvature-stable coupling composite 
laminates, Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Paper No. AIAA-
2003-1506. 
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3.2.4. E-B-S-T coupled laminates (ASBSDS) 

For A16, A26 ≠ 0, the design space contains 6, 524, and 35,610 solutions for 12, 16 and 20 ply laminates.  

 
(a) Aij/AIso (b) Bij/BIso (c) Dij/DIso 

Figure 2 – Polar plots of the: (a) A; (b) B and (c) D matrices, corresponding to off-axis material alignment, 0° ≤ β ≤ 360°, for the 12-ply 
ASBSDS hygro-thermally curvature-stable laminate stacking sequence [−/+/+/−/+/−/−/+/ / / / ]T, assuming standard ply orientations ±45, 
0 and 90° in place of symbols +, −,  and , respectively. 
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Despite the presence of bending-twisting coupling behaviour for off-axis alignment, the properties of this 
laminate closely approximate isotropic behaviour in bending.   
 
This is of particular interest in the context of aero-elastic compliant wind-turbine blade design, for passive load 
alleviation, where laminate level extension-shearing, extension-twisting (and shearing-bending) coupling 
provides the necessary and sufficient response to achieve bending-twisting and extension-twisting at the 
structural level, from aerodynamic and centripetal forces, respectively. 
 

3.2.5. E-B-S-T;B-T coupled laminates (ASBSDF) 

For A16, A26 ≠ 0 and D16, D26 ≠ 0, the design space contains 410, 40,808 and 4,515,473 solutions with 12, 16 and 
20 plies.  
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4. Conclusions 

Stacking sequence configurations for hygro-thermally curvature-stable laminates have been identified in 9 of the 
24 classes of coupled laminate with standard ply angle orientations +45, −45, 0 and 90°.   
 
All arise from the judicious re-alignment of the principal material axis of ASBSDS or B-E-T-S laminates, or 
additionally ASBSDF or B-E-T-S;B-T laminates.   
 
Off-axis material alignments of these parent laminates gives rise to more complex combinations of coupled 
behaviour. 
 
Extending the study to the consideration of double-angle-ply laminates, with θ, −θ, (θ+90), (−θ+90) in place of 
the standard ply angle orientations, reveals additional classes of coupled laminate....   
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